Spatial mapping of ices in the Oph - F core A direct measurement of CO depletion and the formation of CO
نویسنده
چکیده
Aims. Ices in dense star-forming cores contain the bulk of volatile molecules apart from H2 and thus represent a large fraction of dark cloud chemistry budget. Mm observations of gas provide indirect evidence for significant freeze-out of CO in the densest cores. To directly constrain the freeze-out profile of CO, the formation route of CO2 and the carrier of the 6.8 μm band, the spatial distribution of the CO/CO2 ice system and the 6.8 μm band carrier are measured in a nearby dense core. Methods. VLT-ISAAC, ISOCAM-CVF and Spitzer-IRS archival mid-infrared (3-20 μm) spectroscopy of young stellar objects is used to construct a map of the abundances of CO and CO2 ices in the Oph-F star-forming core, probing core radii from 2 × 103 to 14 × 103 AU or densities from 5 × 104 to 5 × 105 cm−3 with a resolution of ∼ 3000 AU. Results. The line-of-sight averaged abundances relative to water ice of both CO and CO2 ices increase monotonously with decreasing distance to the core center. The map traces the shape of the CO abundance profile between freeze-out ratios of 5–60% and shows that the CO2 ice abundance increases by a factor of 2 as the CO freezes out. It is suggested that this indicates a formation route of CO2 on a CO ice surface to produce a CO2 component dilute in CO ice, in addition to a fraction of the CO2 formed at lower densities along with the water ice mantle. It is predicted that the CO2 bending mode band profile should reflect a high CO:CO2 number ratio in the densest parts of dark clouds. In contrast to CO and CO2, the abundance of the carrier of the 6.8 μm band remains relatively constant throughout the core. A simple freeze-out model of the CO abundance profile is used to estimate the binding energy of CO on a CO ice surface to 814±30 K.
منابع مشابه
Spatial prediction of soil electrical conductivity using soil axillary data, soft data derived from general linear model and error measurement
Indirect measurement of soil electrical conductivity (EC) has become a major data source in spatial/temporal monitoring of soil salinity. However, in many cases, the weak correlation between direct and indirect measurement of EC has reduced the accuracy and performance of the predicted maps. The objective of this research was to estimate soil EC based on a general linear model via using se...
متن کاملApplication of multivariate statistics and geostatistical techniques to identify the spatial variability of heavy metals in groundwater resources
The performance of geostatistical and spatial interpolation techniques for estimation of spatial variability of heavy metals and water quality mapping of groundwater resources in Ramiyan district (Golestan province- Iran) were investigated. 24 spring/well water samples were collected and the concentration of heavy metals (Ni, Co, Pb, Cd and Cu) was determined using Differential Pulse Polarograp...
متن کاملApplication of Geostatistical Methods to Estimate Groundwater Level Fluctuations
Keeping the water table at a favorable level is quite significant for a sustainable management of groundwater plans. Various management measures need to know the spatial and temporal behavior of groundwater. Therefore, the measurement of groundwater levels are generally carried out at spatially random locations in the field; whereas, most of the groundwater models requires these measurement at ...
متن کاملApplication of Geostatistical Methods to Estimate Groundwater Level Fluctuations
Keeping the water table at a favorable level is quite significant for a sustainable management of groundwater plans. Various management measures need to know the spatial and temporal behavior of groundwater. Therefore, the measurement of groundwater levels are generally carried out at spatially random locations in the field; whereas, most of the groundwater models requires these measurement at ...
متن کاملLong-term spatial and temporal variability of ambient carbon monoxide in Urmia, Iran
One of the pillars of epidemiologic research on the long-term health effects of air pollution is to estimate the chronic exposures over space and time. In this study, we aimed to measure the intra-urban ambient carbon monoxide (CO) concentrations within Urmia city in Iran, and to build a model within the geographic information system (GIS) to estimate the annual and seasonal means anywhere with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006